REVIEW PAPER
Pathophysiological mechanisms and pharmacological methods of prevention and treatment of bronchopulmonary dysplasia in preterm infants
More details
Hide details
1
Department of Neonatology and Neonatal Intensive Care Unit, Independent Public Healthcare, Puławy, Poland
2
Department of Veterinary Hygiene, Voivodship Veterinary Inspectorate, Lublin, Poland
Corresponding author
Sławomir Jan Wątroba
Department of Neonatology and Neonatal Intensive Care Unit, Independent Public Healthcare, Puławy, Bema 1, 24-100, Puławy, Poland
J Pre Clin Clin Res. 2019;13(4):170-178
KEYWORDS
TOPICS
ABSTRACT
Introduction:
Bronchopulmonary dysplasia (BPD) is a respiratory disease that is characterized by long-term respiratory failure and mainly affects premature infants with low birth weight (LBW), undergoing mechanical ventilation (MV) or requiring long-term oxygen therapy. In Europe, among newborns with birth weight <1500g, the incidence of BPD is around 15%.
Objective:
The purpose of this review was to analyze the pathophysiological mechanisms involved in the development of BPD in premature newborns and to discuss the current possibilities of pharmacological prevention and treatment of BPD.
Description of the state of knowledge:
The BPD pathogenesis is multifactorial. Lung damage is the result of barotrauma and volutrauma due to high-performance MV, actions of reactive oxygen species (ROS) and infectious agents. Currently used methods of pharmacological treatment of severe forms of BPD are mainly based on systemic steroid therapy and can not be considered completely effective and free of side effects.
Conclusions:
Despite the widespread use of proper pharmacotherapy and dynamic development of new methods of respiratory therapy, mortality in BPD is estimated at around 10% – 20%. Infants with BPD are much more exposed to respiratory infections caused by respiratory syncytial virus (RSV), which may result in the development of bronchial hyperresponsiveness and bronchial asthma. Among children with BPD there are significantly higher cognitive and behavioral deficits compared to healthy children, and cerebral palsy is also significantly more common.
ABBREVIATIONS
AA – arachidonic acid; AAP COFN – Committee on Foetus and Newborn of the American Academy of Pediatrics; ACTH – adrenocorticotropin; ADH – vasopressin, antidiuretic hormone; ASMC – airway smooth muscle cells; BPD – bronchopulmonary dysplasia; BTN – betamethasone; C AT – catalase; CC10 – Clara cell 10 kDa protein; CLD – chronic lung disease; COX – cyclooxygenase; CPAP – continuous positive airway pressure; CPS FNC – Fetus and Newborn Committee of the Canadian Pediatric Society; DEX – dexamethasone; ELBW – extremely low birth weight; ENA-78 – epithelial protein activating neutrophils; EURAIL – Europe Against Immature Lung; FC – fludrocortisone; FiO2 – oxygen concentration in the breathing mixture; FTP – fluticasone propionate; GCSs – glucocorticosteroids; GM-CSF – granulocyte and macrophage colony-stimulating factor; GPx – glutathione peroxidase; HC – hydrocortisone; HO. – hydroxyl radical; HO2. – hydroperoxide radical; IFN-γ – gamma interferon; ILs – interleukins; IRDS – respiratory distress syndrome; IUGR – intrauterine growth retardation; IVH – intraventricular haemorrhage; LBW – low birth weight; LTs – leukotrienes; MAS – meconium aspiration syndrome; MIP-1 – macrophage inflammatory protein-1; MMPs – metalloproteinases; MRI – magnetic resonance imaging; MV – mechanical ventilation; n- CPAP – continuous positive airway pressure – nasal method; NEC – necrotizing enterocolitis; O2. – superoxide anion; PD – prednisone; PDA – patent ductus arteriosus; PDGF – platelet-derived growth factor; PGs – prostaglandins; PIP– peak inspiratory pressure; PLA-2 – phospholipase A-2; PMA – postmenstrual age; PVL – periventricular leukomalacia; ROP – retinopathy of prematurity; ROS – reactive oxygen species; RSV – respiratory syncytial virus; SIP – spontaneous gastrointestinal perforation; SOD – superoxide dismutase; TG F -1β – transforming growth factor 1β; TIMP – tissue inhibitor of metalloproteinases; TNF-α – tumor necrosis factor α.
REFERENCES (116)
1.
Ehrenkranz RA, Walsh MC, Vohr BR, Jobe AH, Wright LL, Fanaroff AA, et al. Validation of the National Institutes of Health consensus definition of bronchopulmonary dysplasia. Pediatrics. 2005; 116(6): 1353–1360.
2.
Jobe AH, Ikegami M. Prevention of bronchopulmonary dysplasia. Curr Opin Pediatr. 2001; 13(2): 124–129.
3.
Jobe AJ. The new BPD: an arrest of lung development. Pediatr Res. 1999; 46(6): 641–643.
4.
Jobe AH, Bancalari E. Bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2001; 163(7): 1723–1729.
5.
Gadzinowski J. Neonatologia: Dysplazja oskrzelowo-płucna/ przewlekła choroba płuc [Neonatology: Bronchopulmonary dysplasia / chronic lung disease]. Warsaw, MediPage, 2015.
6.
Taglauer E, Abman SH, Keller RL. Recent advances in antenatal factors predisposing to bronchopulmonary dysplasia. Semin Perinatol. 2018; 42(7): 413–424.
7.
Głowacka E, Lis G. Dysplazja oskrzelowo-płucna – wczesne i odległe następstwa w zakresie układu oddechowego [Broncho-pulmonary dysplasia – early and distant sequelae of the respiratory system]. Pulmonol Alergol Pol. 2008; 76: 438–439.
8.
Siffel C, Kistler KD, Lewis JFM, Sarda SP. Global incidence of bronchopulmonary dysplasia among extremely preterm infants: a systematic literature review. J Matern Fetal Neonatal Med. 2019; 1–11; doi:10.1080/14767058.2019.1646240.
9.
Albertine KH. Pathogenesis of bronchopulmonary dysplasia: An unanticipated journey. The FASEB Journal. 2018; 32(1): 371.1–371.1.
10.
Pasha A, Chen X, Zhou G. Bronchopulmonary dysplasia: Pathogenesis and treatment (Review). Exp Ther Med. 2018; 16(6): 4315–4321.
11.
Willis GR, Fernandez-Gonzalez A, Anastas J, Vitali SH, Liu X, Ericsson M, et al. Mesenchymal stromal cell exosomes ameliorate experimental bronchopulmonary dysplasia and restore lung function through macrophage immunomodulation. Am J Respir Crit Care Med. 2018; 197(1): 104 –116.
12.
Bourbon J, Boucherat O, Chailley-Heu B, Delacourt C. Control mechanisms of lung alveolar development and their disorders in bronchopulmonary dysplasia. Pediatr Res. 2005; 57(5Pt2): 38R-46R.
13.
Laughon MM, Smith PB, Bose C. Prevention of bronchopulmonary dysplasia. SeminFetal Neonatal Med. 2009; 14(6): 374–382.
14.
Piotrowski A. Niewydolność oddechowa noworodków- zapobieganie i leczenie: Powikłania niewydolności oddechowej noworodka [Neonatal respiratory failure – prevention and treatment: Complications of neonatal respiratory failure]. Bielsko-Biala, α-medica press, 2011.
15.
Bancalari E, Abdenour GE, Feller R, Gannon J. Bronchopulmonary dysplasia: clinical presentation. J Pediatr. 1979; 95(5Pt2):819–823.
16.
Ballabh P, Simm M, Kumari J, Califano C, Aghai Z, Laborada G, et al. Respiratory burst activity in bronchopulmonary dysplasia and changes with dexamethasone. PediatrPulmonol. 2003; 35(5): 392–399.
17.
Pandya HC, Kotecha S. Chronic lung disease of prematurity: clinical and pathophysiological correlates. Monaldi Arch Chest Dis. 2001; 56(3): 270–275.
18.
Wang J, Dong W. Oxidative stress and bronchopulmonary dysplasia. Gene. 2018; 678: 177–183.
19.
Morita M, Tanaka K, Matsumura S, Tamura M, Namba F. Perinatal factors associated with bubbly/cystic appearance in bronchopulmonary dysplasia: a nationwide, population-based cohort study in Japan. J Matern Fetal Neonatal Med. 2019; 1–6; doi:10.1080/14767058.2019.1628945.
20.
Chun J, Chun SH, Han YS, Sung TJ. Different degrees of maternal Ureaplasma colonization and its correlation with bronchopulmonary dysplasia in <32 weeks’ preterm infants. Pediatr Neonatol. 2019; 60(4): 441–446.
21.
Jouglet M, Wuillaume I, Buchs C, Reix P, Schweitzer C, Coutier L. Neonatal low respiratory tract chlamydia trachomatis infection: Diagnostic and treatment management. Respir Med Case Rep. 2019; 28:100852.
22.
Ahmadi A, Ramazanzadeh R, Sayehmiri K, Sayehmiri F, Amirmozafari N. Association of Chlamydia trachomatis infections with preterm delivery; a systematic review and meta-analysis. BMC Pregnancy Childbirth. 2018; 18(1): 240.
23.
de la Haye N, Hütten MC, Kunzmann S, Kramer BW. Bronchopulmonary dysplasia and ureaplasma: What do we know so far? Neonatal Medicine 2017; 24(1): 1–6.
24.
Schelonka RL, Waites KB. Ureaplasma infection and neonatal lung disease. Semin Perinatol. 2007; 31(1): 2–9.
25.
Viscardi RM, Atamas SP, Luzina IG, Hasday JD, He JR, Sime PJ, et al. Antenatal Ureaplasma urealyticum respiratory tract infection stimulates proinflammatory, profibrotic responses in the preterm baboon lung. Pediatr Res. 2006; 60(2): 141–146.
26.
Baier RJ, Loggins J, Kruger TE. Monocyte chemoattractant protein-1 and interleukin-8 are increased in bronchopulmonary dysplasia: relation to isolation of Ureaplasma urealyticum. J Investig Med. 2001; 49(4): 362–369.
27.
Cordero L, Ayers LW, Davis K. Neonatal airway colonization with gram-negative bacilli: association with severity of bronchopulmonary dysplasia. Pediatr Infect Dis J. 1997; 16(1): 18–23.
28.
Pammi M, Lal CV, Wagner BD, Mourani PM, Lohmann P, Luna RA, et al. Airway microbiome and development of bronchopulmonary dysplasia in preterm infants: A Systematic Review. J Pediatr. 2019; 204: 126 –133.
29.
Vasilievna KM, Solomonovna KE, Demyanovna BE. The etiology of neonatal pneumonia, complicated by bronchopulmonary dysplasia. J Neonatal Perinatal Med. 2019; doi: 10.3233/NPM-17159.
30.
Plagens-Rotman K, Bączyk G, Kubiak S. Krwawienia wewnątrzczaszkowe u noworodków z ekstremalnie małą urodzeniową masą ciała [Intracranial haemorrhage in newborns with extremely low birth weight]. Now Lek. 2011; 80: 250–257.
31.
Podraza W, Michalczuk B, Jezierska K, Domek H, Kordek A, Łoniewska B, et al. Correlation of retinopathy of prematurity with bronchopulmonary dysplasia. Open Med (Wars). 2018; 13: 67–73.
32.
Poryo M, Boeckh JC, Gortner L, Zemlin M, Duppré P, Ebrahimi-Fakhari D, et al. Ante-, peri- and postnatal factors associated with intraventricular hemorrhage in very premature infants. Early Hum Dev. 2018; 116: 1–8.
33.
Janjindamai W, Prapruettrong A, Thatrimontrichai A, Dissaneevate S, Maneenil G, Geater A. Risk of necrotizing enterocolitis following packed red blood cell transfusion in very low birth weight infants. Indian J Pediatr. 2019; 86(4): 347–353.
34.
Weisz DE, Giesinger RE. Surgical management of a patent ductus arteriosus: Is this still an option? Semin Fetal Neonatal Med. 2018; 23(4): 255 –266.
35.
Chen X, Li H, Qiu X, Yang C, Walther FJ. Neonatal hematological parameters and the risk of moderate-severe bronchopulmonary dysplasia in extremely premature infants. BMC Pediatr. 2019; 19(1): 138.
36.
Ahmed M, Miller E. Macrophage migration inhibitory factor (MIF) in the development and progression of pulmonary arterial hypertension. Glob Cardiol Sci Pract. 2018; 2018(2): 14.
37.
Crosby LM, Waters CM. Epithelial repair mechanisms in the lung. Am J Physiol Lung Cell Mol Physiol. 2010; 298(6): L715–731.
38.
Lachica CI, Begley A, Magee J, Manimtim W. Outcomes of Infants treated for BPD associated pulmonary hypertension and home mechanical ventilation. Pediatrics. 2018; 142(1): 187.
39.
Blanca A, Duijts L, van Mastrigt E, Pijnenburg MW, Ten Harkel DD, Helbing WA, et al. Right ventricular function in infants with bronchopulmonary dysplasia and pulmonary hypertension: a pilot study. Pulm Circ. 2019; 9(1); doi:10.1177/2045894018816063.
40.
Mirza H, Garcia JA, Crawford E, Pepe J, Zussman M, Wadhawan R, et al. Natural history of postnatal cardiopulmonary adaptation in infants born extremely preterm and risk for death or bronchopulmonary dysplasia. J Pediatr. 2018; 198: 187–193.
41.
Borszewska-Kornacka M. Standardy opieki medycznej nad noworodkiem w Polsce: Żywienie pozajelitowe [Standards of medical care for the newborn in Poland: Parenteral nutrition]. Warsaw, Media-Press, 2013.
42.
Amer R, Elsayed YN, Graham MR, Sikarwar AS, Hinton M, Dakshinamurti S. Effect of vasopressin on a porcine model of persistent pulmonary hypertension of the newborn. Pediatr Pulmonol. 2019; 54(3): 319–332.
43.
Bankir L, Bichet DG, Morgenthaler NG. Vasopressin: physiology, assessment and osmosensation. J Intern Med. 2017; 282(4): 284–297.
44.
Ramos AT, Tufik S, Troncone LR. Control of stress-induced ACTH secretion by vasopressin and CRH: Additional evidence. Neuropsychobiology. 2016; 73(3): 184–190.
45.
Jarosz-Lesz A, Maruniak-Chudek I. Copeptin – stable C-terminal fragment of pre-provasopressin as a new stress marker in newborns. PostepyHig Med Dosw. 2015; 69: 681–689.
46.
Caldwell HK. Young WS. Oxytocin and Vasopressin: Genetics and Behavioral Implications. In: Lim R, Lajtha R, editors. Handbook of neurochemistry molecular neurobiology. Springer; New York; 2006. p. 573 – 6 0 7.
47.
Saleh N, Saladino G, Gervasio FL, Haensele E, Banting L, Whitley DC. A three-site mechanism for agonist/antagonist selective binding to vasopressin receptors. Angew Chem Int Ed Engl. 2016; 55(28): 8008–8012.
48.
Hammock EA. Developmental perspectives on oxytocin and vasopressin. Neuropsychopharmacology. 2015; 40(1): 24–42.
49.
Monte LF, Silva Filho LV, Miyoshi MH, Rozov T. Bronchopulmonary dysplasia. J Pediatr (Rio J). 2005; 81(2): 99–110.
50.
Iyengar A, Davis JM. Drug therapy for the prevention and treatment of bronchopulmonary dysplasia. Front Pharmacol. 2015; 6:12; doi:10.3389/fphar.2015.00012.
51.
Smith C, Egunsola O, Choonara I, Kotecha S, Jacqz-Aigrain E, Sammons H. Use and safety of azithromycin in neonates: a systematic review. BMJ Open. 2015; 5(12): e008194.
52.
van de Loo M, van Kaam A, Offringa M, Doyle LW, Onland W. Corticosteroids for the prevention and treatment of bronchopulmonary dysplasia: an overview of systematic reviews. Cochrane Database Syst Rev. 2019; 2; doi:10.1002/14651858.CD013271.
53.
Zeng L, Tian J, Song F, Li W, Jiang L, Gui G, et al. Corticosteroids for the prevention of bronchopulmonary dysplasia in preterm infants: a network meta-analysis. Arch Dis Child Fetal Neonatal Ed. 2018; 103(6): F506-F511.
54.
Shinwell ES, Lerner-Geva L, Lusky A, Reichman B. Less postnatal steroids, more bronchopulmonary dysplasia: a population-based study in very low birthweight infants. Arch Dis Child Fetal Neonatal Ed. 2007; 92(1): F30-F33.
55.
Watterberg KL. Postnatal steroids for bronchopulmonary dysplasia: where are we now? J Pediatr. 2007; 150(4): 327–328.
56.
Yoder BA, Harrison M, Clark RH. Time-related changes in steroid use and bronchopulmonary dysplasia in preterm infants. Pediatrics. 2009; 124(2): 673– 679
57.
Cain DW, Cidlowski JA. Immune regulation by glucocorticoids. Nat Rev Immunol. 2017; 17(4): 233–247.
58.
Cruz-Topete D, Cidlowski JA. Glucocorticoids: molecular mechanisms of action. Immunopharmacology and Inflammation. Springer, Cham, 2018. 249–266.
59.
Nocentini G, Ronchetti S, Bruscoli S, Riccardi C. The clinical pharmacology of past, present, and future glucocorticoids. Systemic Corticosteroids for Inflammatory Disorders in Pediatrics. Adis, Cham, 2015. 43–58.
60.
Ge HZ, Han YE, Li Z, Chen XY, Liu SL, Xu AY. Effects of glucocorticoids on lipopolysaccharide-induced inflammatory responses in human middle ear epithelial cells and its mechanisms. Int J Clin Exp Pathol 2016; 9(11): 11404 –11411.
61.
Keränen T, Moilanen E, Korhonen R. Suppression of cytokine production by glucocorticoids is mediated by MKP-1 in human lung epithelial cells. Inflamm Res. 2017; 66(5): 441–449.
62.
Doyle LW, Cheong JL, Ehrenkranz RA, Halliday HL. Early (< 8 days) systemic postnatal corticosteroids for prevention of bronchopulmonary dysplasia in preterm infants. Cochrane Database Syst Rev. 2017; 10; doi:10.1002/14651858.CD001146.
63.
Doyle LW, Cheong JL, Ehrenkranz RA, Halliday HL. Late (> 7 days) systemic postnatal corticosteroids for prevention of bronchopulmonary dysplasia in preterm infants. Cochrane Database Syst Rev. 2017; 10; doi:10.1002/14651858.CD001145.
64.
Halliday HL, Ehrenkranz RA, Doyle LW. Early postnatal (<96 hours) corticosteroids for preventing chronic lung disease in preterm infants. Cochrane Database Syst Rev. 2003; (1): CD001146.
65.
Shah VS, Ohlsson A, Halliday HL, Dunn M. Early administration of inhaled corticosteroids for preventing chronic lung disease in ventilated very low birth weight preterm neonates. Cochrane Database Syst Rev. 2012; (5): CD001969.
66.
Halliday HL, Ehrenkranz RA, Doyle LW. Moderately early (7–14 days) postnatal corticosteroids for preventing chronic lung disease in preterm infants. Cochrane Database Syst Rev. 2003; (1): CD001144.
67.
Grier DG, Halliday HL. Corticosteroids in the prevention and management of bronchopulmonary dysplasia. SeminNeonatol. 2003; 8 (1): 83 –91
68.
Yates HL, Newell SJ. Postnatal intravenous steroids and long-term neurological outcome: recommendations from meta-analyses. Arch Dis Child Fetal Neonatal Ed. 2012; 97(4): F299–303.
69.
Onland W, Merkus MP, Nuytemans DH, Jansen-van der Weide MC, Holman R, van Kaam AH, et al. Systemic hydrocortisone to prevent bronchopulmonary dysplasia in preterm infants (the SToP-BPD study): statistical analysis plan. Trials. 2018; 19(1): 178.
70.
DeCastro M, El-Khoury N, Parton L, Ballabh P, LaGamma EF. Postnatal betamethasone vs dexamethasone in premature infants with bronchopulmonary dysplasia: a pilot study. J Perinatol. 2009; 29(4): 297–304.
71.
Olnes MJ, Kotliarov Y, Biancotto A, Cheung F, Chen J, Shi R, et al. Effects of systemically administered hydrocortisone on the human immunome. Sci Rep. 2016; 6: 23002.
72.
Annane D, Renault A, Brun-Buisson C, Megarbane B, Quenot JP, Siami S, et al. Hydrocortisone plus fludrocortisone for adults with septic shock. N Engl J Med. 2018; 378(9): 809–818.
73.
Tang K, Huang Y, Dong S, Gao P. Quantitative comparison of hydrocortisone and prednisone in the postoperative hormone therapy of hypercortisolism. Cancer Res. 2017; 77(13): 5642.
74.
Chandrasekhar SS, Rubinstein RY, Kwartler JA, Gatz M, Connelly PE, Huang E, et al. Dexamethasone pharmacokinetics in the inner ear: comparison of route of administration and use of facilitating agents. Otolaryngol Head Neck Surg. 2000; 122(4): 521–528.
75.
Petersen MC, Nation RL, McBride WG, Ashley JJ, Moore RG. Pharmacokinetics of betamethasone in healthy adults after intravenous administration. Eur J Clin Pharmacol. 1983; 25(5): 643–650.
76.
Shah SS, Ohlsson A, Halliday H, Shah V. Inhaled versus systemic corticisteroids for the treatment of chronic lung disease in ventilated very low birth weight preterm infants. Cochrane Database Syst Rev. 2017.
77.
Rozycki HJ, Byron PR, Elliott GR, Carroll T, Gutcher GR. Randomized controlled trial of three different doses of aerosol beclomethasone versus systemic dexamethasone to promote extubation in ventilated premature infants. PediatrPulmonol. 2003; 35(5): 375–383.
78.
Dimitriou G, Greenough A, Giffin FJ, Kavadia V. Inhaled versus systemic steroids in chronic oxygen dependency of preterm infants. Eur J Pediatr. 1997; 156(1): 51–55.
79.
Rademaker KJ, Rijpert M, Uiterwaal CS, Lieftink AF, van Bel F, Grobbee DE, et al. Neonatal hydrocortisone treatment related to 1H-MRS of the hippocampus and short-term memory at school age in preterm born children. Pediatr Res. 2006; 59(2): 309–313.
80.
Rademaker KJ, Uiterwaal CS, Groenendaal F, Venema MM, van Bel F, Beek FJ, et al. Neonatal hydrocortisone treatment: neurodevelopmental outcome and MRI at school age in preterm-born children. J Pediatr. 2007; 150(4): 351–357.
81.
Peltoniemi OM, Lano A, Puosi R, Yliherva A, Bonsante F, Kari MA, et al. Trial of early neonatal hydrocortisone: two-year follow-up. Neonatology. 2009; 95(3): 240–247.
82.
Lodygensky GA, Rademaker K, Zimine S, Gex-Fabry M, Lieftink AF, Lazeyras F, et al. Structural and functional brain development after hydrocortisone treatment for neonatal chronic lung disease. Pediatrics. 2005; 116(1): 1–7.
83.
Cambonie G, Mesnage R, Milési C, Rideau A, Veyrac C, Picaud JC. Hydrocortisone treatment for severe evolving bronchopulmonary dysplasia and cerebral haemodynamics. Arch Dis Child Fetal Neonatal Ed. 2009; 94(2): F154-F155.
84.
Jefferies AL. Postnatal corticosteroids to treat or prevent chronic lung disease in preterm infants. Paediatr Child Health. 2012; 17(10): 573.
85.
Barrington KJ. The adverse neuro-developmental effects of postnatal steroids in the preterm infant: a systematic review of RCTs. BMC Pediatr. 2001; 1: 1.
86.
Ng PC. The effectiveness and side effects of dexamethasone in preterm infants with bronchopulmonary dysplasia. Arch Dis Child. 1993; 68(3): 330–336.
87.
Oray M, Samra KA, Ebrahimiadib N, Meese H, Foster CS. Long-term side effects of glucocorticoids. Expert Opin Drug Saf. 2016; 15(4): 457–465.
88.
Schäcke H, Döcke WD, Asadullah K. Mechanisms involved in the side effects of glucocorticoids. Pharmacol Ther. 2002;96(1): 23–43.
89.
Stark AR, Carlo WA, Tyson JE, Papile LA, Wright LL, Shankaran S, et al. Adverse effects of early dexamethasone treatment in extremely-low-birth-weight infants. N Engl J Med. 2001; 344(2): 95–101.
90.
Gordon PV, Young ML, Marshall DD. Focal small bowel perforation: an adverse effect of early postnatal dexamethasone therapy in extremely low birth weight infants. J Perinatol. 2001; 21(3): 156–160.
91.
Whitelawa A, Thoresenb M. Antenatal steroids and the developing brain. Arch Dis Child Fetal Neonatal Ed. 2000; 83(2): F154-F157.
92.
Huang WL, Beazley LD, Quinlivan JA, Evans SF, Newnham JP, Dunlop SA. Effect of corticosteroids on brain growth in fetal sheep. Obstet Gynecol. 1999; 94(2): 213–218.
93.
Barrington KJ. Postnatal steroids and neurodevelopmental outcomes: a problem in the making. Pediatrics. 2001; 107(6): 1425–1426.
94.
Anderson PJ, Doyle LW. Neurodevelopmental outcome of bronchopulmonary dysplasia. Semin Perinatol. 2006; 30(4): 227–232.
95.
Wątroba S, Kocot J, Bryda J, Kurzepa J. Serum activity of MMP-2 and MMP-9 and stromielisin-1 concentration as predictors in the pathogenesis of bronchopulmonary dysplasia in preterm neonates. Postepy Hig Med Dosw (Online). 2019; 73, in press.
96.
Valentine JS, Doucette PA, Zittin Potter S. Copper-zinc superoxide dismutase and amyotrophic lateral sclerosis. Annu Rev Biochem. 2005; 74: 563–593.
97.
Gentyala RR, Ehret D, Suresh G. Superoxide dismutase for preventing bronchopulmonary dysplasia (BPD) in preterm infants. Cochrane Database Syst Rev. 2019; 1; doi:10.1002/14651858.CD013232.
98.
Sherlock LG, Trumpie A, Hernandez-Lagunas L, McKenna S, Fisher S, Bowler R. Redistribution of extracellular superoxide dismutase causes neonatal pulmonary vascular remodeling and PH but protects against experimental bronchopulmonary dysplasia. Antioxidants (Basel). 2018; 7(3). pii: E42.
99.
Wei Y, Xu YD, Yin LM, Wang Y, Ran J, Liu Q, et al. Recombinant rat CC10 protein inhibits PDGF-induced airway smooth muscle cells proliferation and migration. Biomed Res Int. 2013; 2013: 690937. doi: 10.1155/2013/690937.
100.
Vasanthakumar G, Manjunath R, Mukherjee AB, Warabi H, Schiffmann E. Inhibition of phagocyte chemotaxis by uteroglobin, an inhibitor of blastocyst rejection. Biochem Pharmacol. 1988; 37(3): 389–394.
101.
Hayashida S, Harrod KS, Whitsett JA. Regulation and function of CCSP during pulmonary Pseudomonas aeruginosa infection in vivo. Am J Physiol Lung Cell Mol Physiol. 2000; 279(3): 452–459.
102.
Lesur O, Bernard A, Arsalane K, Lauwerys R, Bégin R, Cantin A, et al. Clara cell protein (CC-16) induces a phospholipase A2-mediated inhibition of fibroblast migration in vitro. Am J Respir Crit Care Med. 1995; 152(1): 290–297.
103.
Dierynck I, Bernard A, Roels H, De Ley M. The human Clara cell protein: biochemical and biological characterisation of a natural immunosuppressor. Mult Scler. 1996; 1(6): 385–387.
104.
Davis JM, Pilon AL, Shenberger J, Breeze JL, Terrin N, Mazela J, et al. The role of recombinant human CC10 in the prevention of chronic pulmonary insufficiency of prematurity. Pediatr Res. 2019; 86(2): 254–260.
105.
Pilon AL, Winn ME, Clayton RS, Hariprakasha H. Modification of CC10 protein by reactive oxygen species: A novel anti-inflammatory mechanism. Am J Respir Crit Care Med. 2016; 193: A5907.
106.
Ramsay PL, DeMayo FJ, Hegemier SE, Wearden ME, Smith CV, Welty SE. Clara cell secretory protein oxidation and expression in premature infants who develop bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2001; 164(1): 155–161.
107.
Chandra S, Davis JM, Drexler S, Kowalewska J, Chester D, Koo HC, et al. Safety and efficacy of intratracheal recombinant human Clara cell protein in a newborn piglet model of acute lung injury. Pediatr Res. 2003; 54(4): 509–515.
108.
DeVries LB, Heyne RJ, Ramaciotti C, Brown LS, Jaleel MA, Kapadia VS, et al. Mortality among infants with evolving bronchopulmonary dysplasia increases with major surgery and with pulmonary hypertension. J Perinatol. 2017; 37(9): 1043–1046.
109.
Steurer MA, Nawaytou H, Guslits E, Colglazier E, Teitel D, Fineman JR, et al. Mortality in infants with bronchopulmonary dysplasia: Data from cardiac catheterization. Pediatr Pulmonol. 2019; 54(6): 804–813.
110.
Halliday HL. Early postnatal dexamethasone and cerebral palsy. Pediatrics. 2002; 109(6): 1168–1169.
111.
Borszewska-Kornacka M. Standardy opieki medycznej nad noworodkiem w Polsce: Profilaktyka zakażeń RSV [Standards of medical care for the newborn in Poland: Prevention of RSV infections]. Warsaw, Media-Press, 2013.
112.
Barr FE, Graham BS, Mallory GB. Respiratory syncytial virus infection: Prevention. UpToDate. 2018; www.uptodate.com/contents/respiratory-syncytial-virus-infection-prevention#H104280568 (access: 2019.09.01).
113.
Chi H, Chung CH, Lin YJ, Lin CH. Seasonal peaks and risk factors of respiratory syncytial virus infections related hospitalization of preterm infants in Taiwan. PLoS One. 2018; 13(5): e0197410.
114.
Pérez Tarazona S, Solano Galán P, Bartoll Alguacil E, Alfonso Diego J. Bronchopulmonary dysplasia as a risk factor for asthma in school children and adolescents: A systematic review. Allergol Immunopathol (Madr). 2018; 46(1): 87–98.
115.
Thomas S, Murthy P, Saigal S. Long-term outcomes of newborns with bronchopulmonary dysplasia. Manual of Neonatal Respiratory Care. Springer, Cham, 2017. 657–661.
116.
Gou X, Yang L, Pan L, Xiao D. Association between bronchopulmonary dysplasia and cerebral palsy in children: a meta-analysis. BMJ Open. 2018; 8(9): e020735.