REVIEW PAPER
Influence of natural dairy probiotics on health
More details
Hide details
1
Student Scientific Club of Clinical Dietetics, Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Faculty of Medical Sciences, University of Medical Sciences, Poznan, Poland
2
Department and Clinic of Urology and Oncological Urology, University of Medical Sciences, Poznan, Poland
3
Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, University of Medical Sciences, Poznan,
Poland
Corresponding author
Natalia Wojciechowska-Alwin
Student Scientific Club of Clinical Dietetics operating at Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Faculty of Medical Sciences, Poznan University of Medical Sciences, Poznan, Poland, Szamarzewskiego St. 82/84, 60-569, Poznan, Poland
J Pre Clin Clin Res. 2019;13(4):153-161
KEYWORDS
TOPICS
ABSTRACT
Introduction:
Probiotics are live microorganisms which, administered in appropriate amounts, have a beneficial effect on human health. Food products that contain these microorganisms are known as natural probiotics. Probiotic food include the group of dairy products in which fermented milk products are majority.
Objective:
The aim of the study is to review current data and summarize knowledge on the effects of consumption of dairy probiotics on human health. The review also aims at discussing the potential of these health-supporting microorganisms as a prevention factor against civilization diseases
State of knowledge:
Consumption of probiotic food, especially natural dairy probiotic food, may have a positive effect on health due to the presence of probiotic bacteria or by the presence of their metabolites (postbiotics) demonstrating bioactive effects. The intake of these products is associated with the improvement of parameters such as lipid profile, insulin sensitivity, cardiovascular risk parameters, or presents protective effect on bones. Studies show a correlation between the consumption of natural probiotics and reduction in duration of diarrhea or alleviation of the course of inflammatory bowel diseases.
Conclusions:
The influence of natural dairy probiotics consumption on the state of health has recently been broadly investigated. Regular consumption of these products has shown beneficial a effect on gut microbiota and on a wide range of health parameters. However, further studies are necessary to draw a precise conclusion.
ABBREVIATIONS
ACE – Angiotensin-Converting Enzyme; ASD – Autism Spectrum Disorders; CFU – Colony Forming Units; CLA – Conjugated
Linoleic Acid; DNA – Deoxyribonucleic Acid; EPS – Exopolysaccharides; FAO – Food and Agriculture Organization of the
United Nations; GABA – γ-Aminobutyric Acid; Glu – Glutamic Acid; HDL – High Density Lipoprotein; IBD – Inflammatory
Bowel Diseases; IBS – Irritable Bowel Syndrome; LDL – Low Density Lipoprotein; LPS – Lipopolysaccharides; MS – Multiple
Sclerosis; SCFA – Short-Chain Fatty Acids; PD – Parkinson’s Disease; WHO – World Health Organization; WPC – Whey Protein
Concentrate
REFERENCES (65)
1.
Krakowiak O, Nowak R. Mikroflora przewodu pokarmowego człowieka – znaczenie, rozwój, modyfikacje. Post Fitoter. 2015;3:193–200.
2.
Karakuła-Juchnowicz H, Pankowicz H, Juchnowicz D, Valverde Piedra J, Małecka-Massalska T. Intestinal microbiota – a key to understanding the pathophysiology of anorexia nervosa? Psychiatr Pol. 2017;51(5):859– 70.
https://doi.org/10.12740/PP/65....
3.
Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol [Internet]. 2016;14(8). https:// doi.org/10.1371/journal.pbio.1002533.
4.
Jenmalm MC. The mother–offspring dyad: microbial transmission, immune interactions and allergy development. J Intern Med. 2017;282:484–95.
https://doi.org/10.1111/joim.1....
5.
Jańczewska I, Domżalska-Popadiuk I. Kolonizacja przewodu pokarmowego noworodków oraz wpływ czynników modyfikujących mikrobiotę jelitową na zachowanie zdrowia. Forum zakażeń. 2016;7(6):443–8.
6.
Gregorczyk-Maślanka K, Kurzawa R. Mikrobiota organizmu ludzkiego i jej wpływ na homeostazę immunologiczną – część I. Alerg Astma Immun. 2016;21(3):146–50.
7.
Skrypnik K, Suliburska J. Association between the gut microbiota and mineral metabolism. J Sci Food Agric. 2018;98(7):2449–60.
https://doi. org/10.1002/jsfa.8724.
8.
Skonieczna-Żydecka K, Łnoiewski I, Maciejewska D, Marlicz W. Mikrobiota jelitowa i składniki pokarmowe jako determinanty funkcji układu nerwowego. Część I. Mikrobiota przewodu pokarmowego. Aktual Neurol. 2017;17(4):181–8.
https://doi.org/10.15557/AN.20....
9.
Cerdó T, García-Valdés L, Altmäe S, Ruíz A, Suárez A, Campoy C. Role of microbiota function during early life on child’s neurodevelopment. Trends Food Sci Tech. 2016;57:273–88.
https://doi.org/10.1016/j. tifs.2016.08.007.
10.
Markowiak P, Śliżewska K. Effects of probiotics, prebiotics and synbiotics on human health. Nutrients. 2017;9(1021):1–30.
https://doi. org/10.3390/nu9091021.
11.
Mackowiak PA. Recycling Metchnikoff: Probiotics, the intestinalm microbiome and the quest for long life. Front Public Health [Internet]. 2013;1:52.
https://doi.org/10.3389/fpubh.....
12.
Vergin F. Anti-und Probiotica. Hippokrates. 1954;25(4):116–9.
13.
Lilly DM, Stillwell RH. Probiotics: Growth-promoting factors produced by microorganism. Science. 1965;147(3659):747–8.
14.
Report of a Joint FAO/WHO. Working group on drafting guidelines for the evaluation of probiotics in food. London, Ontario, Canada: 2002. April, May. Guidelines for evaluation of probiotics in food.
15.
Kapka-Skrzypczak L, Niedźwiecka J, Wojtyła A, Kruszewski M. Probiotyki i prebiotyki jako aktywny składnik żywności funkcjonalnej. Pediatr Edocrinol. 2012;18(2):79–83.
16.
Mojka K. Probiotyki, prebiotyki i synbiotyki – charakterystyka i funkcje. Probl Hig Epidemiol. 2014;95(3):541–9.
17.
Szulińska M, Łoniewski I, van Hemert S, Sobieska M, Bogdański P. Dose-dependent effects of multispecies probiotic supplementation on the lipopolysaccharide (LPS) level and cardiometabolic profile in obese postmenopausal women: A 12-week randomized clinical trial. Nutrients. 2018;10(6).
https://doi.org/10.3390/nu1006....
18.
Szulińska M, Łoniewski I, Skrypnik K, Sobieska M, Korybalska K, Suliburska J, et al. Multispecies Probiotic Supplementation favorably affects vascular function and reduces arterial stiffness in obese postmenopausal women—A 12-week placebo-controlled and randomized clinical study. Nutrients. 2018;10(11).
https://doi. org/10.3390/nu10111672.
19.
Steinka I. Wybrane aspekty stosowania probiotyków. Ann Acad Med Gedan. 2011;41:97–108.
20.
Linares DM, Gómez C, Renes E, Fresno JM, Tornadijo ME, Ross RP, et al. Lactic acid bacteria and bifidobacteria with potential to design natural biofunctional health-promoting dairy foods. Front Microbiol. 2017;8.
https://doi.org/10.3389/fmicb.....
21.
Fazilah NF, Ariff AB, Khayat ME, Rios-Solis L, Halim M. Influence of probiotics, prebiotics, synbiotics and bioactive phytochemicals on the formulation of functional yogurt. J Funct Foods. 2018;48:387–99.
https://doi.org/10.1016/j.jff.....
22.
Rezac S, Kok CR, Heermann M, Hutkins R. Fermented foods as a dietary source of live organisms. Front Microbiol. 2018;9.
https://doi. org/10.3389/fmicb.2018.01785.
23.
Babio N, Becerra-Tomás N, Martínez-González MÁ, Corella D, Estruch R, Ros E, et al. Consumption of yogurt, low-fat milk, and other low-fat dairy products is associated with lower risk of metabolic syndrome incidence in an elderly Mediterranean population. J Nutr. 2015;145(10):2308–16.
https://doi.org/10.3945/jn.115....
24.
Sayón-Orea C, Bes-Rastrollo M, Martí A, Pimenta AM, Martín-Calvo N, Martínez-González MA. Association between yogurt consumption and the risk of metabolic syndrome over 6 years in the SUN study. BMC Public Health. 2015;15:170.
https://doi.org/10.1186/s12889....
25.
Madjd A, Taylor MA, Mousavi N, Delavari A, Malekzadeh R, Macdonald IA, et al. Comparison of the effect of daily consumption of probiotic compared with low-fat conventional yogurt on weight loss in healthy obese women following an energy-restricted diet: a randomized controlled trial. Am J Clin Nutr. 2016;103(2):323–9.
https://doi. org/10.3945/ajcn.115.120170.
26.
Mohammadi-Sartang M, Bellissimo N, Totosy de Zepetnek JO, Brett NR, Mazloomi SM, Fararouie M, et al. The effect of daily fortified yogurt consumption on weight loss in adults with metabolic syndrome: A 10-week randomized controlled trial. Nutr Metab Cardiovasc Dis. 2018;28(6):565–74.
https://doi.org/10.1016/j.nume....
27.
Wu L, Sun D. Consumption of yogurt and the incident risk of cardiovascular disease: A meta-analysis of nine cohort studies. Nutrients. 2017;9(3).
https://doi.org/10.3390/nu9030....
28.
Zhang K, Chen X, Zhang L, Deng Z. Fermented dairy foods intake and risk of cardiovascular diseases: A meta-analysis of cohort studies Crit Rev Food Sci Nutr. 2019;1–6.
https://doi.org/10.1080/104083... 018.1564019.
30.
Sahni S, Tucker KL, Kiel DP, Quach L, Casey VA, Hannan MT. Milk and yogurt consumption are linked with higher bone mineral density but not with hip fracture: the Framingham Offspring Study. Arch Osteoporos. 2013;8(0):119.
https://doi.org/10.1007/s11657....
31.
Biver E, Durosier-Izart C, Merminod F, Chevalley T, van Rietbergen B, Ferrari SL, et al. Fermented dairy products consumption is associated with attenuated cortical bone loss independently of total calcium, protein, and energy intakes in healthy postmenopausal women. Osteoporos Int. 2018;29(8):1771–82.
https://doi.org/10.1007/s00198... 018–4535–4.
32.
Michaëlsson K, Wolk A, Lemming EW, Melhus H, Byberg L. Intake of milk or fermented milk combined with fruit and vegetable consumption in relation to hip fracture rates: A cohort study of Swedish Women. J Bone Miner Res. 2018;33(3):449–57.
https://doi.org/10.1002/jbmr.3....
33.
Navarro-Alarcón M, Cabrera-Vique C, Ruiz-López MD, Olalla M, Artacho R, Giménez R, et al. Levels of Se, Zn, Mg and Ca in commercial goat and cow milk fermented products: Relationship with their chemical composition and probiotic starter culture. Food Chem. 2011;129(3):1126–31.
https://doi.org/10.1016/j.food....
34.
Quintana AV, Olalla-Herrera M, Ruiz-López MD, Moreno-Montoro M, Navarro-Alarcón M. Study of the effect of different fermenting microorganisms on the Se, Cu, Cr, and Mn contents in fermented goat and cow milks. Food Chem. 2015;188:234–9.
https://doi.org/10.1016/j. foodchem.2015.05.008.
35.
Górska A, Przystupski D, Niemczura MJ, Kulbacka J. Probiotic Bacteria: A promising tool in cancer prevention and therapy. Curr Microbiol. 2019; 76(8):939–49.
https://doi.org/10.1007/s00284....
36.
Pace F, Pace M, Quartarone G. Probiotics in digestive diseases: focus on Lactobacillus GG. Minerva Gastroenterol Dietol. 2015;61(4):273–92.
37.
Faghfoori Z, Pourghassem Gargari B, Saber A, Seyyedi M, Fazelian S, Yari Khosroushahi A. Prophylactic effects of secretion metabolites of dairy lactobacilli through downregulation of ErbB-2 and ErbB-3 genes on colon cancer cells. Eur J Cancer Prev. 2017;
https://doi.org/10.1097/ CEJ.0000000000000393.
38.
Haghshenas B, Nami Y, Haghshenas M, Abdullah N, Rosli R, Radiah D, et al. Bioactivity characterization of Lactobacillus strains isolated from dairy products. Microbiologyopen. 2015;4(5):803–13.
https://doi. org/10.1002/mbo3.280.
39.
Zhang K, Dai H, Liang W, Zhang L, Deng Z. Fermented dairy foods intake and risk of cancer. Int J Cancer. 2019;144(9):2099–108. https:// doi.org/10.1002/ijc.31959.
40.
Guillemard E, Tondu F, Lacoin F, Schrezenmeir J. Consumption of a fermented dairy product containing the probiotic Lactobacillus casei DN-114001 reduces the duration of respiratory infections in the elderly in a randomised controlled trial. Br J Nutr. 2010;103(1):58–68. https:// doi.org/10.1017/S0007114509991395.
41.
Shadnoush M, Hosseini RS, Khalilnezhad A, Navai L, Goudarzi H, Vaezjalali M. Effects of probiotics on gut microbiota in patients with inflammatory bowel disease: A double-blind, placebo-controlled clinical trial. Korean J Gastroenterol. 2015;65(4):215–21.
https://doi.org/10.4166/ kjg.2015.65.4.215.
42.
Bolla PA, Carasi P, Serradell Mde L, De Antoni GL. Kefir-isolated Lactococcus lactis subsp. lactis inhibits the cytotoxic effect of Clostridium difficile in vitro. J Dairy Res. 2013;80(1):96–102. https:// doi.org/10.1017/S0022029912000623.
43.
Agamennone V, Krul C AM, Rijkers G, Kort R. A practical guide for probiotics applied to the case of antibiotic-associated diarrhea in The Netherlands. BMC Gastroenterol. 2018;18(1):103.
https://doi. org/10.1186/s12876–018–0831-x.
44.
Zhang B, Wang Y, Tan Z, Li Z, Jiao Z, Huang Q. Screening of probiotic activities of Lactobacilli strains isolated from traditional Tibetan qula, A raw yak milk cheese. Asian-Australas J Anim Sci. 2016;29(10):1490–9.
https://doi.org/10.5713/ajas.1....
45.
Kołakowski P, Kowalska M, Sędrowska-Ćwiek J. Mikroflora serów dojrzewających. Innowacyjne Mleczarstwo. 2013;1(I):6–13.
46.
Haghshenas B, Nami Y, Almasi A, Abdullah N, Radiah D, Rosli R, et al. Isolation and characterization of probiotics from dairies. Iran J Microbiol. 2017;9(4):234–43.
47.
Cuffia F, Pavón Y, George G, Reinheimer J, Burns P. Effect of storage temperature on the chemical, microbiological, and sensory characteristics of pasta filata soft cheese containing probiotic lactobacilli. Food Sci Technol Int. 2019;1082013219854563. https:// doi.org/10.1177/1082013219854563.
48.
Gagnaire V, Jardin J, Rabah H, Briard-Bion V, Jan G. Emmental cheese environment enhances Propionibacterium freudenreichii stress tolerance. PLoS ONE. 2015;10(8):e0135780.
https://doi.org/10.1371/ journal.pone.0135780.
49.
Rabah H, do Carmo FL, Jan G. Dairy Propionibacteria: Versatile probiotics. Microorganisms. 2017;5(2).
https://doi.org/10.3390/ microorganisms5020024.
50.
Hütt P, Songisepp E, Rätsep M, Mahlapuu R, Kilk K, Mikelsaar M. Impact of probiotic Lactobacillus plantarum TENSIA in different dairy products on anthropometric and blood biochemical indices of healthy adults. Benef Microbes. 2015;6(3):233–43.
https://doi.org/10.3920/ BM2014.0035.
51.
Lollo PCB, Morato PN, Moura CS, Almada CN, Felicio TL, Esmerino EA, et al. Hypertension parameters are attenuated by the continuous consumption of probiotic Minas cheese. Food Res Int. 2015;76(Pt 3):611–7.
https://doi.org/10.1016/j.food....
52.
Tognon G, Nilsson LM, Shungin D, Lissner L, Jansson J-H, Renström F, et al. Nonfermented milk and other dairy products: associations with all-cause mortality. Am J Clin Nutr. 2017;105(6):1502–11.
https://doi. org/10.3945/ajcn.116.140798.
54.
Sornplang P, Piyadeatsoontorn S. Probiotic isolates from unconventional sources: a review. J Anim Sci Technol. 2016;58:26.
https://doi.org/10.1186/ s40781–016–0108–2.
55.
Joishy TK, Dehingia M, Khan MR. Bacterial diversity and metabolite profiles of curd prepared by natural fermentation of raw milk and back sloping of boiled milk. World J Microbiol Biotechnol. 2019;35(7):102.
https://doi.org/10.1007/s11274....
56.
Nadelman P, Magno MB, Masterson D, da Cruz AG, Maia LC. Are dairy products containing probiotics beneficial for oral health? A systematic review and meta-analysis. Clin Oral Investig. 2018;22(8):2763–85.
https://doi.org/10.1007/s00784....
57.
Cicenia A, Scirocco A, Carabotti M, Pallotta L, Marignani M, Severi C. Postbiotic activities of Lactobacilli-derived factors. J Clin Gastroenterol. 2014;48:18–22.
https://doi.org/10.1097/MCG.00....
58.
Cicenia A, Santangelo F, Gambardella L, Pallotta L, Iebba V, Scirocco A, et al. Protective role of postbiotic mediators secreted by Lactobacillus rhamnosus GG versus Lipopolysaccharide-induced damage in human colonic smooth muscle cells. J Clin Gastroenterol. 2016;50:140–4.
https://doi.org/10.1097/MCG.00....
59.
Gao J, Li Y, Wan Y, Hu T, Liu L, Yang S, et al. A novel postbiotic from Lactobacillus rhamnosus GG with a beneficial effect on intestinal barrier function. Front Microbiol. 2019;10:477.
https://doi.org/10.3389/ fmicb.2019.00477.
60.
Han X, Lee A, Huang S, Gao J, Spence JR, Owyang C. Lactobacillus rhamnosus GG prevents epithelial barrier dysfunction induced by interferon-gamma and fecal supernatants from irritable bowel syndrome patients in human intestinal enteroids and colonoids. Gut Microbes. 2018;10(1):59–76.
https://doi.org/10.1080/194909....
61.
Compare D, Rocco A, Coccoli P, Angrisani D, Sgamato C, Iovine B, et al. Lactobacillus casei DG and its postbiotic reduce the inflammatory mucosal response: an ex-vivo organ culture model of post-infectious irritable bowel syndrome. BMC Gastroenterol. 2017;17.
https://doi. org/10.1186/s12876–017–0605-x.
62.
Tsilingiri K, Barbosa T, Penna G, Caprioli F, Sonzogni A, Viale G, et al. Probiotic and postbiotic activity in health and disease: comparison on a novel polarised ex-vivo organ culture model. Gut. 2012;61(7):1007–15.
https://doi.org/10.1136/gutjnl....
64.
Carding S, Verbeke K, Vipond D, Corfe B, Owen L. Dysbiosis of the gut microbiota in disease. Microb Ecol Health and Dis. 2015;26.
https://doi. org/10.3402/mehd.v26.26191.
65.
Tojo R, Suárez A, Clemente MG, de los Reyes-Gavilán CG, Margolles A, Gueimonde M, et al. Intestinal microbiota in health and disease:.Tojo R, Suárez A, Clemente MG, de los Reyes-Gavilán CG, Margolles A, Gueimonde M, et al. Intestinal microbiota in health and disease: Role of bifidobacteria in gut homeostasis. World J Gastroenterol. 2014;20(41):15163–76.
https://doi.org/10.3748/wjg.v2....