RESEARCH PAPER
Increased neurogenesis after ACEA and levetiracetam treatment in mouse pilocarpine model of epilepsy
 
More details
Hide details
1
Isobolographic Analysis Laboratory, Institute of Rural Health, Lublin, Poland
 
2
Department of Physiopathology, Institute of Rural Health, Lublin, Poland
 
3
Department of Neurological Surgery, Medical University, Lublin, Poland
 
4
Department of Biopharmacy, Medical University, Lublin, Poland
 
5
Department of Pathophysiology, Medical University, Lublin, Poland
 
 
Corresponding author
Mirosław Zagaja   

Institut of Rural Health in Lublin, ul. Jaczewskiego 2, 20-090 Lublin, Poland
 
 
J Pre Clin Clin Res. 2017;11(2):136-141
 
KEYWORDS
TOPICS
ABSTRACT
Introduction and objectives:
The aim of the study was to asses the impact of long-term therapy with the second generation antiepileptic drug levetiracetam (LEV) with arachidonyl-2’-chloroethylamide (ACEA), a highly selective cannabinoid CB1 receptor agoniston the process of neurogenesis in a mouse pilocarpine model of epilepsy (PILO). Additionally, a relationship was established between the treatment with ACEA in combination with LEV, and hippocampal neurogenesis in mouse PILO brain.

Material and methods:
All experiments were performed on adolescent male CB57/BL mice injected i.p. with LEV (10 mg/kg), ACEA (10 mg/kg) and PMSF (30 mg/kg) (phenylmethylsulfonyl fluoride — a substance protecting ACEA against degradation by the fatty-acid amidohydrolase), pilocarpine (PILO, a single dose 290 mg/kg) and methylscopolamine (30 min before PILO to stop the peripheral cholinergic effects of the pilocarpine, 1 mg/kg). The process of neurogenesis was evaluated after10 days treatment with LEV and ACEA.

Results:
Obtained results indicated that the combinations of ACEA+PMSF+LEV and ACEA +PMSF increased the total number of total newborn cells compared to the control. Moreover, ACEA+PMSF administered alone and in combination with LEV had a significant impact on neurogenesis increasing the total number of newborn neurons compared to the control group. Neither LEV nor PMSF had a significant impact on the number of proliferating cells and newborn neurons when compared to the control PILO group. In turn, LEV administered alone decreased significantly the number of astrocytes. However, ACEA+PMSF has demonstrated significant increase of astrocytes compare to control mice.

Conclusions:
These data provide substantial evidence that the combination of LEV+ACEA significantly increases the level of newborn neurons in the PILO dentate subgranular zone.

REFERENCES (55)
1.
European Medicines Agency: Keppra: EPAR – product information 2014. http://www.ema.europa.eu/docs/... human /000277/WC500041334.pdf (access. 12.11.2017).
 
2.
Luszczki JJ, Andres MM, Czuczwar P, Cioczek-Czuczwar A., Ratnaraj N, Patsalos PN, Czuczwar SJ. Pharmacodynamic and pharmacokinetic characterization of interactions between levetiracetam and numerous antiepileptic drugs in the mouse maximal electroshock seizure model: an isobolographic analysis. Epilepsia 2006; 47: 10-20.
 
3.
Luszczki JJ, Andres-Mach MM, Ratnaraj N, Patsalos PN, Czuczwar SJ. Levetiracetam and felbamate interact both pharmacodynamically and pharmacokinetically: an isobolographic analysis in the mouse maximal electroshock model. Epilepsia 2007; 48: 806-815.
 
4.
Dudra-Jastrzebska M, Andres-Mach MM, Ratnaraj N, Patsalos PN, Czuczwar SJ, Luszczki JJ. Isobolographic characterization of the anticonvulsant interaction profiles of levetiracetam in combination with clonazepam, ethosuximide, phenobarbital and valproate in the mouse pentylenetetrazole-induced seizure model. Seizure 2009; 18: 607-614.
 
5.
Dudra-Jastrzebska M, Andres-Mach MM, Sielski M, Ratnaraj N, Patsalos PN, Czuczwar SJ, Luszczki JJ. Pharmacodynamic and pharmacokinetic interaction profiles of levetiracetam in combination with gabapentin, tiagabine and vigabatrin in the mouse pentylenetetrazole-induced seizure model: an isobolographic analysis. Eur J Pharmacol. 2009; 605: 87-94.
 
6.
Barton ME, Klein BD, Wolf HH, White HS. Pharmacological characterization of the 6 Hz psychomotor seizure model of partial epilepsy. Epilepsy Res. 2001; 47: 217-227.
 
7.
Florek-Luszczki M, Wlaz A, Zagaja M, Andres-Mach M, Kondrat-Wrobel MW, Luszczki JJ. Effects of WIN 55, 212-2 (a synthetic cannabinoid CB1 and CB2 receptor agonist) on the anticonvulsant activity of various novel antiepileptic drugs against 6 Hz-induced psychomotor seizures in mice. Pharmacol Biochem Behav. 2015; 30: 53-58.
 
8.
Xu T, Bajjalieh SM. SV2 modulates the size of the readily releasable pool of secretory vesicles. Nat Cell Biol. 2001; 3(8): 691-698.
 
9.
Zou H, Brayer SW, Hurwitz M, Niyonkuru C, Fowler LE, Wagner AK. Neuroprotective, neuroplastic, and neurobehavioral effects of daily treatment with levetiracetam in experimental traumatic brain injury. Neurorehabil Neural Repair. 2013; 27: 878-88.
 
10.
Wang H, Gao J, Lassiter TF, McDonagh DL, Sheng H, Warner DS, Lynch JR., Laskowitz DT. Levetiracetam is neuroprotective in murine models of closed head injury and subarachnoid hemorrhage. Neurocrit Care. 2006; 5: 71-78.
 
11.
Gibbs JE, Cock HR. Administration of levetiracetam after prolonged status epilepticus does not protect from mitochondrial dysfunction in a rodent model. Epilepsy Res. 2007; 73: 208-212.
 
12.
Szaflarski JP, Sangha KS, Lindsell CJ, Shutter LA. Prospective, randomized, single-blinded comparative trial of intravenous levetiracetam versus phenytoin for seizure prophylaxis. Neurocrit Care. 2010; 12: 165-172.
 
13.
Steinbaugh LA, Lindsell CJ, Shutter LA, Szaflarski JP. Initial EEG predicts outcomes in a trial of levetiracetam vs. fosphenytoin for seizure prevention. Epilepsy Behav. 2012; 23: 280-284.
 
14.
Shetty AK. Prospects of levetiracetam as a neuroprotective drug against status epilepticus, traumatic brain injury, and stroke. Front Neurol. 2013; 4: 172.
 
15.
Plech T, Luszczki JJ, Wujec M, Flieger J, Pizoń M. Synthesis, characterization and preliminary anticonvulsant evaluation of some 4-alkyl-1,2,4-triazoles. Eur J Med Chem. 2013; 60: 208-215.
 
16.
Kamiński K, Zagaja M, Łuszczki JJ, Rapacz A, Andres-Mach M, Latacz G, Kieć-Kononowicz K. Design, synthesis and anticonvulsant activity of new hybrid compounds derived from 2-(2,5-dioxopyrrolidin-1-yl) propanamides and 2-(2,5-dioxopyrroli-din-1-yl) butanamides. J Med Chem. 2015; 58: 5274-5286.
 
17.
Kamiński K, Zagaja M, Rapacz A, Łuszczki JJ, Andres-Mach M, Abram M, Obniska J. New hybrid molecules with anticonvulsant and antinociceptive activity derived from 3-methyl- or 3,3-dimethyl-1-[1-oxo-1-(4-phenylpiperazin-1-yl)propan-2-yl]pyrrolidine-2,5-diones. Bioorg Med Chem. 2016; 24: 606-618.
 
18.
Abram M, Zagaja M, Mogilski Sz, Andres-Mach M, Latacz G, Baś S, Łuszczki JJ, Kieć-Kononowicz K, Kamiński K. Multifunctional hybrid compounds derived from 2-(2,5-dioxopyrrolidin-1-yl)-3-methoxypropanamides with anticonvulsant and antinociceptive properties. J Med Chem. 2017; 60: 8565-8579.
 
19.
Blair RE, Deshpande LS, Sombati S, Falenski KW, Martin BR, DeLorenzo RJ. Activation of the cannabinoid type-1 receptor mediates the anticonvulsant properties of cannabinoids in the hippocampal neuronal culture models of acquired epilepsy and status epilepticus. J Pharmacol Exp Ther. 2006; 317: 1072-1078.
 
20.
Deshpande LS, Blair RE, Ziobro JM, Sombati S, Martin BR, DeLorenzo RJ Endocannabinoids block status epilepticus in cultured hippocampal neurons. Eur J Pharmacol. 2007; 558: 52-59.
 
21.
Luszczki JJ, Czuczwar P, Cioczek-Czuczwar A, Dudra-Jastrzebska M, Andres-Mach M, Czuczwar SJ. Effect of arachidonyl-2'-chloroethylamide, a selective cannabinoid CB1 receptor agonist, on the protective action of the various antiepileptic drugs in the mouse maximal electroshock induced seizure model. Prog Neuropsychopharmacol Biol Psychiatry. 2010; 34: 18- 25.
 
22.
Garcia C, Palomo-Garo C, Garcia-Arencibia M, Ramos J, Pertwee R, Fernandez-Ruiz J. Symptom-relieving and neuroprotective effects of the phytocannabinoid Δ-THCV in animal models of Parkinson's disease. Br J Pharmacol. 2011; 163: 1495-1506.
 
23.
Andres-Mach M, Zolkowska D, Barcicka-Klosowska B, Haratym-Maj A, Florek-Luszczki M, Luszczki JJ. Effect of ACEA-a selective cannabinoid CB1 receptor agonist on the protective action of different antiepileptic drugs in the mouse pentylenetetrazole-induced seizure model. Prog Neuropsychopharmacol Biol Psychiatry. 2012; 39: 301-309.
 
24.
Morena M, Campolongo P. The endocannabinoid system: An emotional buffer in the modulation of memory function. Neurobiol Learn Mem. 2013; 112: 30-43.
 
25.
Citraro R, Russo E., Ngomba RT, Nicoletti F, Scicchitano F, Whalley BJ, Calignano A, De Sarro G. CB1 agonists, locally applied to the cortico-thalamic circuit of rats with genetic absence epilepsy, reduce epileptic manifestations. Epilepsy Res. 2013; 106: 74-82.
 
26.
Kochman LJ, dos Santos AA, Fornal CA, Jacobs BL. Despite strong behavioral disruption, Delta 9-tetrahydrocannabinol does not affect cell proliferation in the adult mouse dentate gyrus. Brain Res. 2006; 1113: 86-93.
 
27.
Wolf SA, Bick-Sander A,Fabel K, Leal-Galicia P, Tauber S, Ramirez-Rodriguez G, Müller A, Melnik A, Waltinger TP, Ullrich O, Kempermann G. Cannabinoid receptor CB1 mediates baseline and activity-induced survival of new neurons in adult hippocampal neurogenesis. Cell Commun Signal. 2010; 8: 12.
 
28.
Palazuelos J, Ortega Z, Diaz-Alonso J, Guzman M, Galve-Roperh I. CB2 cannabinoid receptors promote neural progenitor cell proliferation via mTORC1 signaling. J Biol Chem. 2012; 287: 1198-1209.
 
29.
Jiang W, Zhang Y, Xiao L, Van Cleemput J, Ji SP, Bai G, Zhang X. Cannabinoids promote embryonic and adult hippocampus neurogenesis and produce anxiolytic- and antidepressant-like effects. J Clin Invest. 2005; 115: 3104-3116.
 
30.
Abboussi O, Tazi A, Paizanis E, El Ganouni S. Chronic exposure to WIN55,212-2 affects more potently spatial learning and memory in adolescents than in adult rats via a negative action on dorsal hippocampal neurogenesis. Pharmacol Biochem Behav. 2014; 120: 95-102.
 
31.
Compagnucci C, Di Siena S, Bustamante MB, Di Giacomo D, Di Tommaso M, Maccarrone M, Grimaldi P, Sette C. Type-1 (CB1) cannabinoid receptor promotes neuronal differentiation and maturation of neural stem cells. PLoS ONE 2013; 8: e54271.
 
32.
Andres-Mach M, Zagaja M, Haratym-Maj A, Rola R, Maj M, Haratym J, Dudra-Jastrzębska M, Łuszczki JJ. A long-term treatment with arachidonyl-2'-chloroethylamide combined with valproate increases neurogenesis in a mouse pilocarpine model of epilepsy. Int J Mol Sci. 2017; 18: 900.
 
33.
Luszczki JJ, Czuczwar P, Cioczek-Czuczwar A, Czuczwar SJ. Arachidonyl-2'-chloroethylamide, a highly selective cannabinoid CB1 receptor agonist, enhances the anticonvulsant action of valproate in the mouse maximal electroshock-induced seizure model. Eur J Pharmacol. 2006; 547: 65-74.
 
34.
Bhaskaran MD, Smith BN. Cannabinoid-mediated inhibition of recurrent excitatory circuitry in the dentate gyrus in a mouse model of temporal lobe epilepsy. PLoS ONE 2010; 5: e10683.
 
35.
Mazzuferri M, Kumar G, Rospo C, Kaminski RM. Rapid epileptogenesis in the mouse pilocarpine model: Video-EEG, pharmacokinetic and histopathological characterization. Exp Neurol. 2012; 238: 156-167.
 
36.
Racine RJ, Gartner JG, Burnham WM. Epileptiform activity and neural plasticity in limbic structures. Brain Res. 1972; 47: 262-268.
 
37.
Curia G, Longo D, Biagini G, Jones RS, Avoli M. The pilocarpine model of temporal lobe epilepsy. J Neurosci Methods. 2008; 172: 143-157.
 
38.
Andres-Mach M, Haratym-Maj A, Zagaja M, Rola R, Maj M, Chrościńska-Krawczyk M, Luszczki JJ. ACEA (a highly selective cannabinoid CB1 receptor agonist) stimulates hippocampal neurogenesis in mice treated with antiepileptic drugs. Brain Res. 2015; 1624: 86-94.
 
39.
Andres-Mach M, Zolkowska D, Barcicka-Klosowska B, Haratym-Maj A, Florek-Luszczki M, Luszczki JJ. Effect of ACEA – a selective cannabinoid CB1 receptor agonist on the protective action of different antiepileptic drugs in the mouse pentylenetetrazole-induced seizure model. Prog Neuropsychopharmacol Biol Psychiatry. 2012; 39: 301-309.
 
40.
Vinet J, Vainchtein ID, Spano C, Giordano C, Bordini D, Curia G, Dominici M, Boddeke HW, Eggen BJ, Biagini G. Microglia are less pro-inflammatory than myeloid infiltrates in the hippocampus of mice exposed to status epilepticus. Glia 2016; 64: 1350-1362.
 
41.
Abercrombie M. Estimation of nuclear population from microtome sections. Anat Rec. 1946; 94: 239-247.
 
42.
Cortes-Altamirano JL, Olmos-Hernández A, Bonilla-Jaime H, Bandala C, González-Maciel A, Alfaro-Rodríguez A. Levetiracetam as an antiepileptic, neuroprotective, and hyperalgesic drug. Neurol India. 2016; 64(6): 1266-1275.
 
43.
Zou H, Brayer SW, Hurwitz M, Niyonkuru C, Fowler LE, Wagner AK. Neuroprotective, neuroplastic, and neurobehavioral effects of daily treatment with levetiracetam in experimental traumatic brain injury. Neurorehabil Neural Repair. 2013; 27: 878-89.
 
44.
Crepeau AZ, Treiman DM. Levetiracetam: a comprehensive review. Expert Rev Neurother. 2010; 10: 159-171.
 
45.
Micov A, Tomic M, Popovic B, Stepanovic-Petrovic R. Theantihyperalgesic effect of levetiracetam in an inflammatory model ofpain in rats: Mechanism of action. Br J Pharmacol. 2010; 161: 384-392.
 
46.
Stepanovic-Petrovic RM, Micov A, Tomic M, Ugresic ND. The localperipheral antihyperalgesic effect of levetiracetam and its mechanism ofaction in an inflammatory pain model. Anesth Analg. 2012; 115: 1457-1466.
 
47.
Tomic MA, Micov AM, Stepanovic-Petrovic RM. Levetiracetaminteracts synergistically with nonsteroidal analgesics and caffeine toproduce antihyperalgesia in rats. J Pain 2013; 14: 1371-1382.
 
48.
Shannon H, Eberle E, Peters S. Comparison of the effects ofanticonvulsant drugs with diverse mechanisms of action in the formalintest in rats. Neuropharmacology 2005; 48: 1012-1-20.
 
49.
Ozcan M, Ayar A, Canpolat S, Kutlu S. Antinociceptive efficacy oflevetiracetam in a mice model for painful diabetic neuropathy. Acta Anaesthesiol Scand. 2008; 52: 926-930.
 
50.
Falah M, Madsen C, Holbech JV, Sindrup SH. A randomized, placebocontrolledtrial of levetiracetam in central pain in multiple sclerosis. Eur J Pain 2012; 16: 860-869.
 
51.
Rossi S, Mataluni G, Codecà C, Fiore S, Buttari F, Musella A, et al.Effects of levetiracetam on chronic pain in multiple sclerosis: Results of apilot, randomized, placebo-controlled study. Eur J Neurol. 2009; 16: 360-366.
 
52.
Lee DS, Ryu HJ, Kim JE, Choi HC, Kim YI, Song HK, et al. The effectof levetiracetam on status epilepticus-induced neuronal death in the rathippocampus. Seizure 2013; 22: 368-377.
 
53.
Kilicdag H, Daglıoglu K, Erdogan S, Guzel A, Sencar L, Polat S,Zorludemir S. The effect of levetiracetam on neuronal apoptosis inneonatal rat model of hypoxic ischemic brain injury. Early Hum Dev. 2013; 89: 355-360.
 
54.
Yan BC, Shen H, Zhang Y, Zhu X, Wang J, Xu P, Jiang D, Yu X. The antiepileptic drug levetiracetam promotes neuroblast differentiation and expression of superoxide dismutase in the mouse hippocampal dentate gyrus via PI3K/Akt signalling. Neurosci Lett. 2018; 662: 84-90.
 
55.
Zagaja M, Haratym-Maj A, Szewczyk A, Rola R, Maj M, Łuszczki JJ, Andres-Mach M. Levetiracetam combined with ACEA, highly selective cannabinoid CB1 receptor agonist changes neurogenesis in adolescent mouse brain. Cell Tissue Res. 2017; (in press).
 
eISSN:1898-7516
ISSN:1898-2395
Journals System - logo
Scroll to top