REVIEW PAPER
 
KEYWORDS
TOPICS
ABSTRACT
Introduction and objective:
Smoking is associated with periodontal disease, potentially malignant disorders and oral cancer. Recent increase in the electronic cigarette use creates new, yet undiscovered consequences for both general and oral health. Although the negative effects of nicotinism have been known for years, new information and correlations of the effects of tobacco smoking continue to emerge. The objective of this article is to provide an update on effects of both conventional smoking and electronic nicotine delivery systems on the oral health.

Review methods:
A review of the recent literature (from 01.2000 to 06.2022) was conducted using PubMed, Web of Since and Google Scholar databases.

Smoking alters immune function promoting inflammation and impairs tissue healing. Typical problems for smokers include poor oral hygiene, halitosis and periodontal disease. Nicotinism contributes also to the oral cancer. Modern heat-not-burn nicotine delivery systems, which operate with lower temperatures and do not exude typical cigarette smoke, are increasingly popular alternative to traditional cigarettes. It is likely that e-cigarettes have fewer carcinogenic effects, but they contain nicotine and other substances that negatively affect the oral cavity. Similarly, IQOS cigarettes generate harmful products, but generally at lower concentrations than traditional cigarettes.

Summary:
Oral pathologies are predominantly associated with the use of traditional cigarettes as a result of the oral tissue and immune system exposure to composition of cigarette smoke. Although modern electric nicotine delivery systems seem to be less harmful, their long-term effects on oral health are still under-recognized. Medical professionals, especially dentists should identify the addicted patient and counsel on quitting nicotine addiction.

Bielecka-Kowalska NP, Bielicka S, Lewkowicz N. Effects of tobacco smoking and electronic nicotine delivery systems on oral health – a narrative review. J Pre-Clin Clin Res. 2022; 16(3): 118–125. doi: 10.26444/jpccr/154648
 
REFERENCES (77)
1.
Al Kawas S, Al-Marzooq F, Rahman B, et al. The impact of smoking different tobacco types on the subgingival microbiome and periodontal health: a pilot study. Sci. Rep. 2021;11(1):1113. doi:10.1038/s41598-020- 80937-3.
 
2.
Münzel T, Hahad O, Kuntic M, et al. Effects of tobacco cigarettes, e-cigarettes, and waterpipe smoking on endothelial function and clinical outcomes. Eur Heart J. 2020;41(41):4057–4070. doi:10.1093/eurheartj/ ehaa460.
 
3.
Olsen I. The oral microbiome in health and disease. Oral Infect Gen Heal. From Mol. to Chairside. 2015;01:97–114. doi:10.1007/978-3-319-25091-5_10.
 
4.
Ramôa CP, Eissenberg T, Sahingur SE. Increasing popularity of waterpipe tobacco smoking and electronic cigarette use: Implications for oral healthcare. J Periodontal Res. 2017;52:813–823. doi:10.1111/ jre.12458.
 
5.
Nordqvist C. What Chemicals Are In Cigarette Smoke? www. medicalnewstoday.com/articles/215420#1 (access: 2022.03.30).
 
6.
Alkam T, Nabeshima T. Molecular mechanisms for nicotine intoxication. Neurochem Int. 2019;125:117–126. doi:10.1016/j.neuint.2019.02.006.
 
7.
Pack EC, Kim HS, Jang DY, et al. Risk assessment of toxicants on WHO TobReg priority list in mainstream cigarette smoke using humansmoked yields of Korean smokers. Environ Res. 2019;169:206–219. doi:10.1016/j.envres.2018.11.012.
 
8.
Yu G, Phillips S, Gail MH, et al. The effect of cigarette smoking on the oral and nasal microbiota. Microbiome. 2017;5(1):3. doi:10.1186/ s40168-016-0226-6.
 
9.
Petrušić N, Posavac M, Sabol I, et al. The Effect of Tobacco Smoking on Salivation. Acta Stomatol Croat. 2015;49(4):309–315. doi:10.15644/ asc49/4/6.
 
10.
Borojevic T. Smoking and periodontal disease. Mater Sociomed. 2012;24:274–276. doi:10.5455/msm.2012.24.274-276.
 
11.
Tjahajawati S, Rafisa A, Lestari EA. The Effect of Smoking on Salivary Calcium Levels, Calcium Intake, and Bleeding on Probing in Female. Int J Dent. 2021;2021:2221112. doi:10.1155/2021/2221112.
 
12.
West R. Tobacco smoking: Health impact, prevalence, correlates and interventions. Psychol Health. 2017;32(8):1018–1036. doi:10.1080/088 70446.2017.1325890.
 
13.
Visvanathan R, Mahendra J, Ambalavanan N, et al. Effect of smoking on periodontal health. J Clin Diagn Res. 2014;8(7):ZC46-ZC49. doi:10.7860/ JCDR/2014/8359.4597.
 
14.
Huang C, Shi G. Smoking and microbiome in oral, airway, gut and some systemic diseases. J Transl Med. 2019;17(1):225. doi:10.1186/s12967-019-1971-7.
 
15.
Balaji SM. Tobacco smoking and surgical healing of oral tissues: a review. Indian J Dent Res. 2008;19(4):344–348. doi:10.4103/0970-9290.44540.
 
16.
Drovandi A, Salem S, Barker D, et al. Human Biomarker Exposure From Cigarettes Versus Novel Heat-Not-Burn Devices: A Systematic Review and Meta-Analysis. Nicotine Tob Res Off J Soc Res Nicotine Tob. 2020;22:1077–1085. doi:10.1093/ntr/ntz200.
 
17.
Trombelli L, Farina R. A review of factors influencing the incidence and severity of plaque-induced gingivitis. Minerva Stomatol. 2013;62(6):207–234.
 
18.
Omer-Cihangir R, Baser U, Kucukgergin C, et al. Impact of Smoking on Neutrophil Enzyme Levels in Gingivitis: A Case-Control Study. Int J Environ Res Public Health. 2021 Jul 30;18(15):8075. doi: 10.3390/ ijerph18158075.
 
19.
Mooney J, Hodge PJ, Kinane DF. Humoral immune response in early-onset periodontitis: influence of smoking. J Periodontal Res. 2001;36(4):227–232. doi:10.1034/j.1600-0765.2001.036004227.x.
 
20.
Jacob V, Vellappally S, Smejkalová J. The influence of cigarette smoking on various aspects of periodontal health. Acta Medica (Hradec Kralove). 2007;50:3–5. doi:10.14712/18059694.2017.52.
 
21.
Rifai M, Aoun G, Majzoub Z. Evaluation of the Papillary Gingival Vasculature in Smokers and Nonsmokers with Chronic Periodontitis: A Clinical In Vivo Study. J Int Soc Prev Community Dent. 2020;10:368– 375. doi:10.4103/jispcd.JISPCD_134_20.
 
22.
AL Harthi SSY, Natto ZS, Midle JB, et al. Association between time since quitting smoking and periodontitis in former smokers in the National Health and Nutrition Examination Surveys (NHANES) 2009 to 2012. J Periodontol. 2019;90:16–25. doi:10.1002/JPER.18-0183.
 
23.
Tanner AC, Kent R Jr, Van Dyke T, et al. Clinical and other risk indicators for early periodontitis in adults. J Periodontol. 2005;76(4):573–581. doi:10.1902/jop.2005.76.4.573.
 
24.
Meyer MS, Joshipura K, Giovannucci E, et al. A review of the relationship between tooth loss, periodontal disease, and cancer. Cancer Causes Control. 2008;19(9):895–907. doi:10.1007/s10552-008-9163-4.
 
25.
Amaranath BJ, Das N, Gupta I, et al. Types of bone destruction and its severity in chronic periodontitis patients with tobacco smoking habit using periapical radiographs and transgingival probing: A cross-sectional study. J Indian Soc Periodontol. 2020;24(1):20–25. doi:10.4103/jisp.jisp_212_19.
 
26.
Souto MLS, Rovai ES, Villar CC, et al. Effect of smoking cessation on tooth loss: a systematic review with meta-analysis. BMC Oral Health. 2019;19(1):245. doi:10.1186/s12903-019-0930-2.
 
27.
Calzada MT, Posada-López A, Gutiérrez-Quiceno B, Botero JE. Association Between Tobacco Smoking, Dental Status and Self-perceived Oral Health in Elderly Adults in Colombia. J Cross Cult Gerontol. 2021 Jun;36(2):187–200. doi: 10.1007/s10823-021-09426-y.
 
28.
Leite FRM, Nascimento GG, Scheutz F, et al. Effect of Smoking on Periodontitis: A Systematic Review and Meta-regression. Am J Prev Med. 2018;54:831–841. doi:10.1016/j.amepre.2018.02.014.
 
29.
Abu-ta, M. The effects of smoking on periodontal disease: An evidence-based comprehensive literature review. OJST. 2014 Jan;4:33–41. doi:10.1051/mbcb/2017028.
 
30.
Górska R, et al. Choroby przyzębia 2017. In: Zapalenie przyzębia – konsensus 2 grupy roboczej Warsztatów 2017 dotyczących klasyfikacji chorób przyzębia i tkanek okołowszczepowych. Warszawa: PZWL; 2018. p. 55–94.
 
31.
Pinkas J, Kaleta D, Zgliczyński WS, et al. The Prevalence of Tobacco and E-Cigarette Use in Poland: A 2019 Nationwide Cross-Sectional Survey. Int J Environ Res Public Health. 2019;16(23):4820. doi:10.3390/ijerph16234820.
 
32.
World Health Organization. WHO global report on trends in prevalence of tobacco smoking 2000–2025, 2nd ed. World Health Organization. https://apps.who.int/iris/hand... (access: 2021.04.17).
 
33.
Shastri MD, Shukla SD, Chong WC, et al. Smoking and COVID-19: What we know so far. Respir Med. 2021;176:106237. doi:10.1016/j.rmed.2020.106237.
 
34.
Chen I-L, Todd I, Fairclough LC. Immunological and pathological effects of electronic cigarettes. Basic Clin Pharmacol Toxicol. 2019;125:237–252. doi:10.1111/bcpt.13225.
 
35.
Winkelhoff AJ van, Bosch-Tijhof CJ, Winkel EG, et al. Smoking Affects the Subgingival Microflora in Periodontitis. J Periodontol. 2001;72:666–671. doi:10.1902/jop.2001.72.5.666.
 
36.
Eggert FM, McLeod MH, Flowerdew G. Effects of smoking and treatment status on periodontal bacteria: evidence that smoking influences control of periodontal bacteria at the mucosal surface of the gingival crevice. J Periodontol. 2001;72(9):1210–1220. doi:10.1902/jop.2000.72.9.1210.
 
37.
Johnson G, Slach N. Impact of Tobacco Use on Periodontal Status. J Dent Educ. 2001;65:313–321. doi:10.1002/j.0022-0337.2001.65.4.tb03401.x.
 
38.
Haffajee AD, Socransky SS. Relationship of cigarette smoking to the subgingival microbiota. J Clin Periodontol. 2001;28(5):377–388. doi:10.1034/j.1600-051x.2001.028005377.x.
 
39.
Checchi V, Maravic T, Bellini P, et al. The Role of Matrix Metalloproteinases in Periodontal Disease. Int J Environ Res Public Health. 2020;17(14):4923. doi:10.3390/ijerph17144923.
 
40.
Kiili M, Cox SW, Chen HW, et al. Collagenase-2 (MMP-8) and collagenase-3 (MMP-13) in adult periodontitis: molecular forms and levels in gingival crevicular fluid and immunolocalisation in gingival tissue. J Clin Periodontol. 2002;29:224–232. doi:10.1034/j.1600-051x.2002.290308.x.
 
41.
Visvanathan R, Mahendra J, N A, et al. Effect of smoking on periodontal health. J Clin Diagn Res. 2014;8(7):ZC46-ZC49. doi:10.7860/JCDR/2014/8359.4597.
 
42.
César Neto JB, Rosa EF, Pannuti CM, et al. Smoking and periodontal tissues: a review. Braz Oral Res. 2012;26 Suppl 1:25–31. doi:10.1590/s1806-83242012000700005.
 
43.
Graziani F, Karapetsa D, Mardas N, et al. Surgical treatment of the residual periodontal pocket. Periodontol 2000. 2018;76(1):150–163. doi:10.1111/prd.12156.
 
44.
Lien L, Bolstad I, Bramness JG. Smoking among inpatients in treatment for substance use disorders: prevalence and effect on mental health and quality of life. BMC Psychiatry. 2021;21(1):244. doi:10.1186/s12888-021-03252-9.
 
45.
Amagasa T, Yamashiro M, Uzawa N. Oral premalignant lesions: from a clinical perspective. Int J Clin Oncol. 2011;16(1):5–14. doi:10.1007/s10147-010-0157-3.
 
46.
Shukla A. Potentially malignant disorders of the oral cavity: a clinical study. Indian J Otolaryngol Head Neck Surg. 2014;66(1):79–85. doi:10.1007/s12070-013-0680-4.
 
47.
Sreeja C, Ramakrishnan K, Vijayalakshmi D, et al. Oral pigmentation: A review. J Pharm Bioallied Sci. 2015;7(Suppl 2):S403-S408. doi:10.4103/0975-7406.163471.
 
48.
Woo SB. Oral Epithelial Dysplasia and Premalignancy. Head Neck Pathol. 2019 Sep;13(3):423–439. doi: 10.1007/s12105-019-01020–6. Epub 2019 Mar 18. PMID: 30887394; PMCID: PMC6684678.
 
49.
Kuzio M, Wapniarska K, Danilewicz M, et al. Oral epithelial dysplasia and oral cancer prevalence in routine white lesion biopsies – a 6-year retrospective study. J Pre Clin Clin Res. 2020;14(3):63–68. doi:10.26444/jpccr/125393.
 
50.
Odell E, Kujan O, Warnakulasuriya S, et al. Oral epithelial dysplasia: Recognition, grading and clinical significance, PubMed 2021 Nov;27(8):1947–1976. doi: 10.1111/odi.13993.
 
51.
Taybos G. Oral changes associated with tobacco use. Am J Med Sci. 2003;326(4):179–182. doi:10.1097/00000441-200310000-00005.
 
52.
Rosebush MS, Briody AN, Cordell KG. Black and Brown: Non-neoplastic Pigmentation of the Oral Mucosa. Head Neck Pathol. 2019 Mar;13(1):47–55. doi: 10.1007/s12105-018-0980-9.
 
53.
Macacu A, Autier P, Boniol M, et al. Active and passive smoking and risk of breast cancer: a meta-analysis. Breast Cancer Res Treat. 2015;154(2):213–224. doi:10.1007/s10549-015-3628-4.
 
54.
Aghiorghiesei O, Zanoaga O, Nutu A, et al. The World of Oral Cancer and Its Risk Factors Viewed from the Aspect of MicroRNA Expression Patterns. Genes (Basel). 2022 Mar.
 
55.
Moryson W, Stawinska-Witoszynska B. Premature Mortality Due to Tobacco-Related Malignancies in Poland. Int J Gen Med. 2021;14:2171-2182. doi:10.2147/IJGM.S310416.
 
56.
NIDA. What are treatments for tobacco dependence?. National Institute on Drug Abuse website. https://nida.nih.gov/publicati.... April 12, 2021 Accessed June 16, 2022. (access: 2022.03.20).
 
57.
Rutkowska M, Hnitecka S, Nahajowski M, et al. Oral cancer: The first symptoms and reasons for delaying correct diagnosis and appropriate treatment. Adv Clin Exp Med. 2020;29(6):735–743. doi:10.17219/acem/116753.
 
58.
Saraswat N, Pillay R, Everett B, et al. Knowledge, attitudes and practices of South Asian immigrants in developed countries regarding oral cancer: an integrative review. BMC Cancer. 2020 May 27;20(1):477. doi: 10.1186/s12885-020-06944-9.
 
59.
Sobus SL, Warren GW. The biologic effects of cigarette smoke on cancer cells. Cancer. 2014;120(23):3617–3626. doi:10.1002/cncr.28904.26;13(4):594. doi: 10.3390/genes13040594.
 
60.
Rumel RC, Rusu LC, Gaje PN, et al. The Epidemiological Trend of Oral Carcinoma in Eastern Europe. Rev Chim. 2019 Aug;70(8):2917–2922.doi.org/10.37358/RC.19.8.7456.
 
61.
Montero PH, Patel SG. Cancer of the oral cavity. Surg Oncol Clin N Am. 2015;24(3):491–508. doi:10.1016/j.soc.2015.03.006.
 
62.
Maasland DH, van den Brandt PA, Kremer B, et al. Alcohol consumption, cigarette smoking and the risk of subtypes of head-neck cancer: results from the Netherlands Cohort Study. BMC Cancer. 2014;14:187. doi:10.1186/1471-2407-14-187.
 
63.
Kumar M, Nanavati R, Modi TG, et al. Oral cancer: Etiology and risk factors: A review. J Cancer Res Ther. 2016;12(2):458–463. doi:10.4103/0973-1482.186696.
 
64.
Aghiorghiesei O, Zanoaga O, Nutu A, et al. The World of Oral Cancer and Its Risk Factors Viewed from the Aspect of MicroRNA Expression Patterns. Genes (Basel). 2022 Mar 26;13(4):594. doi: 10.3390/genes13040594.
 
65.
Kim S, Selya AS. The Relationship Between Electronic Cigarette Use and Conventional Cigarette Smoking Is Largely Attributable to Shared Risk Factors. Nicotine Tob Res. 2020;22(7):1123–1130. doi:10.1093/ntr/ntz157.
 
66.
Overbeek DL, Kass AP, Chiel LE, et al. A review of toxic effects of electronic cigarettes/vaping in adolescents and young adults. Critical Reviews in Toxicology. 2020 Jul;50(6):531–538. doi: 10.1080/10408444.2020.1794443.
 
67.
Yang I, Sandeep S, Rodriguez J. The oral health impact of electronic cigarette use: a systematic review. Crit Rev Toxicol. 2020;50(2):97–127. doi:10.1080/10408444.2020.1713726.
 
68.
Ralho A, Coelho A, Ribeiro M, et al. Effects of Electronic Cigarettes on Oral Cavity: A Systematic Review. J Evid Based Dent Pract. 2019;19(4):101318. doi:10.1016/j.jebdp.2019.04.002.
 
69.
Jankowski M, Krzystanek M, Zejda JE, et al. E-Cigarettes are More Addictive than Traditional Cigarettes-A Study in Highly Educated Young People. Int J Environ Res Public Health. 2019;16(13):2279. doi:10.3390/ijerph16132279.
 
70.
Bitzer ZT, Goel R, Trushin N, et al. Free Radical Production and Characterization of Heat-Not-Burn Cigarettes in Comparison to Conventional and Electronic Cigarettes. Chem Res Toxicol. 2020;33(7):1882–1887. doi:10.1021/acs.chemrestox.0c00088.
 
71.
Pouly S, Ng WT, Benzimra M, et al. Effect of Switching to the Tobacco Heating System Versus Continued Cigarette Smoking on Chronic Generalized Periodontitis Treatment Outcome: Protocol for a Randomized Controlled Multicenter Study. JMIR Res Protoc. 2021;10(1):e15350. doi:10.2196/15350.
 
72.
Pagano S, Negri P, Coniglio M, et al. Heat-not-burn tobacco (IQOS), oral fibroblasts and keratinocytes: cytotoxicity, morphological analysis, apoptosis and cellular cycle. An in vitro study. J Periodontal Res. 2021;56(5):917–928. doi:10.1111/jre.12888.
 
73.
Bafunno D, Catino A. Lamorgese V, et al. Impact of tobacco control interventions on smoking initiation, cessation, and prevalence: a systematic review. J Thorac Dis. 2020;12:3844–3856. doi:10.21037/jtd.2020.02.23.
 
74.
Kopa PN, Pawliczak R. IQOS – a heat-not-burn (HnB) tobacco product – chemical composition and possible impact on oxidative stress and inflammatory response. A systematic review. Toxicol Mech Methods. 2020;30:81–87. doi:10.1080/15376516.2019.1669245.
 
75.
Pieper E, Mallock N, Henkler-Stephani F, et al. “Heat not burn” tobacco devices as new tobacco industry products: health risks. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2018;61(11):1422–1428. doi:10.1007/s00103-018-2823-y.
 
76.
Vinoth Kumar NM, Khijmatgar S, Chowdhury C. Interrelations of Level of Urinary Cotinine and Score for Fagerstrom Test for Nicotine Dependence among Beedi Smokers, and Smokeless Tobacco Users in India. Indian J Psychol Med. 2017;39(4):392–398. doi:10.4103/0253-7176.211758.
 
77.
NIDA CTN Common Data Elements. cde.drugabuse.gov/instrument/d7c0b0f5-b865-e4de-e040-bb89ad43202b (access: 2022.03.24).
 
eISSN:1898-7516
ISSN:1898-2395
Journals System - logo
Scroll to top